How to reset Keras metrics?

Written by - Aionlinecourse1556 times views

In Keras, you can reset the metrics of a model by calling the reset_metrics method on the model object. Here's an example:

model = keras.Model(...)

# Compile the model with some metrics
model.compile(optimizer='adam', loss='mean_squared_error', metrics=['mean_absolute_error'])

# Fit the model on some data
model.fit(x_train, y_train, epochs=10)

# Reset the metrics
model.reset_metrics()

This will reset the metric values for all metrics that have been compiled into the model. Note that this does not change the list of metrics that the model is compiled with; it only resets their values. To change the list of metrics, you will need to recompile the model.

Alternatively, you can reset the metrics for a specific epoch by passing the reset_metrics argument to the fit method. For example:

# Fit the model on some data and reset the metrics after each epoch
model.fit(x_train, y_train, epochs=10, reset_metrics=True)

This will reset the metric values after each epoch, so that the metric values are only calculated for the current epoch.

Recommended Projects

Deep Learning Interview Guide

Topic modeling using K-means clustering to group customer reviews

Have you ever thought about the ways one can analyze a review to extract all the misleading or useful information?...

Natural Language Processing
Deep Learning Interview Guide

Medical Image Segmentation With UNET

Have you ever thought about how doctors are so precise in diagnosing any conditions based on medical images? Quite simply,...

Computer Vision
Deep Learning Interview Guide

Build A Book Recommender System With TF-IDF And Clustering(Python)

Have you ever thought about the reasons behind the segregation and recommendation of books with similarities? This project is aimed...

Machine LearningDeep LearningNatural Language Processing
Deep Learning Interview Guide

Automatic Eye Cataract Detection Using YOLOv8

Cataracts are a leading cause of vision impairment worldwide, affecting millions of people every year. Early detection and timely intervention...

Computer Vision
Deep Learning Interview Guide

Crop Disease Detection Using YOLOv8

In this project, we are utilizing AI for a noble objective, which is crop disease detection. Well, you're here if...

Computer Vision
Deep Learning Interview Guide

Vegetable classification with Parallel CNN model

The Vegetable Classification project shows how CNNs can sort vegetables efficiently. As industries like agriculture and food retail grow, automating...

Machine LearningDeep Learning
Deep Learning Interview Guide

Banana Leaf Disease Detection using Vision Transformer model

Banana cultivation is a significant agricultural activity in many tropical and subtropical regions, providing a vital source of income and...

Deep LearningComputer Vision