In Tensorflow, a common task is to plot a confusion matrix for a prefetched dataset. This is a good way to visualize the model's performance and identify any potential problems. In this article, we'll look at the basics of how to plot a confusion matrix for a tupled dataset. It's important to remember that this matrix is only a rough representation of the data; it does not represent actual data.
How to plot confusion matrix for prefetched dataset in Tensorflow
Solution 1:
Disclaimer: this won't work for shuffled datasets. I will update this answer as soon as I can.
You can use tf.stack
to concatenate all the dataset values. Like so:
true_categories = tf.concat([y for x, y in test_dataset], axis=0)
For reproducibility, let's say you have a dataset, a neural network, and a training loop:
import tensorflow_datasets as tfds
import tensorflow as tf
from sklearn.metrics import confusion_matrix
data, info = tfds.load('iris', split='train',
as_supervised=True,
shuffle_files=True,
with_info=True)
AUTOTUNE = tf.data.experimental.AUTOTUNE
train_dataset = data.take(120).batch(4).prefetch(buffer_size=AUTOTUNE)
test_dataset = data.skip(120).take(30).batch(4).prefetch(buffer_size=AUTOTUNE)
model = tf.keras.Sequential([
tf.keras.layers.Dense(8, activation='relu'),
tf.keras.layers.Dense(16, activation='relu'),
tf.keras.layers.Dense(info.features['label'].num_classes, activation='softmax')
])
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam',
metrics='accuracy')
history = model.fit(train_dataset, validation_data=test_dataset, epochs=50, verbose=0)
Now that your model has been fitted, you can predict the test set:
y_pred = model.predict(test_dataset)
array([[2.2177568e-05, 3.0841196e-01, 6.9156587e-01],
[4.3539176e-06, 1.2779665e-01, 8.7219906e-01],
[1.0816366e-03, 9.2667454e-01, 7.2243840e-02],
[9.9921310e-01, 7.8686583e-04, 9.8775059e-09]], dtype=float32)
This is going to be a (n_samples, 3)
array because we're working with three categories. We want a (n_samples, 1)
array for sklearn.metrics.confusion_matrix
, so take the argmax:
predicted_categories = tf.argmax(y_pred, axis=1)
<tf.Tensor: shape=(30,), dtype=int64, numpy=
array([2, 2, 2, 0, 2, 2, 2, 2, 1, 1, 2, 0, 0, 2, 1, 1, 1, 2, 0, 2, 1, 2,
1, 0, 2, 0, 1, 2, 1, 0], dtype=int64)>
Then, we can take all the y
values from the prefetch dataset:
true_categories = tf.concat([y for x, y in test_dataset], axis=0)
[<tf.Tensor: shape=(4,), dtype=int64, numpy=array([1, 1, 1, 0], dtype=int64)>,
<tf.Tensor: shape=(4,), dtype=int64, numpy=array([2, 2, 2, 2], dtype=int64)>,
<tf.Tensor: shape=(4,), dtype=int64, numpy=array([1, 1, 1, 0], dtype=int64)>,
<tf.Tensor: shape=(4,), dtype=int64, numpy=array([0, 2, 1, 1], dtype=int64)>,
<tf.Tensor: shape=(4,), dtype=int64, numpy=array([1, 2, 0, 2], dtype=int64)>,
<tf.Tensor: shape=(4,), dtype=int64, numpy=array([1, 2, 1, 0], dtype=int64)>,
<tf.Tensor: shape=(4,), dtype=int64, numpy=array([2, 0, 1, 2], dtype=int64)>,
<tf.Tensor: shape=(2,), dtype=int64, numpy=array([1, 0], dtype=int64)>]
Then, you are ready to get the confusion matrix:
confusion_matrix(predicted_categories, true_categories)
array([[ 9, 0, 0],
[ 0, 9, 0],
[ 0, 2, 10]], dtype=int64)
(9 + 9 + 10) / 30 = 0.933
is the accuracy score. It corresponds to model.evaluate(test_dataset)
:
8/8 [==============================] - 0s 785us/step - loss: 0.1907 - accuracy: 0.9333
Also the results are consistent with sklearn.metrics.classification_report
:
precision recall f1-score support
0 1.00 1.00 1.00 8
1 0.82 1.00 0.90 9
2 1.00 0.85 0.92 13
accuracy 0.93 30
macro avg 0.94 0.95 0.94 30
weighted avg 0.95 0.93 0.93 30
Here's the entire code:
import tensorflow_datasets as tfds
import tensorflow as tf
from sklearn.metrics import confusion_matrix
data, info = tfds.load('iris', split='train',
as_supervised=True,
shuffle_files=True,
with_info=True)
AUTOTUNE = tf.data.experimental.AUTOTUNE
train_dataset = data.take(120).batch(4).prefetch(buffer_size=AUTOTUNE)
test_dataset = data.skip(120).take(30).batch(4).prefetch(buffer_size=AUTOTUNE)
model = tf.keras.Sequential([
tf.keras.layers.Dense(8, activation='relu'),
tf.keras.layers.Dense(16, activation='relu'),
tf.keras.layers.Dense(info.features['label'].num_classes, activation='softmax')
])
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam',
metrics='accuracy')
history = model.fit(train_dataset, validation_data=test_dataset, epochs=50, verbose=0)
y_pred = model.predict(test_dataset)
predicted_categories = tf.argmax(y_pred, axis=1)
true_categories = tf.concat([y for x, y in test_dataset], axis=0)
confusion_matrix(predicted_categories, true_categories)
Solution 2:
This code will work with shuffled tf.data.Dataset
y_pred = [] # store predicted labels
y_true = [] # store true labels
# iterate over the dataset
for image_batch, label_batch in dataset: # use dataset.unbatch() with repeat
# append true labels
y_true.append(label_batch)
# compute predictions
preds = model.predict(image_batch)
# append predicted labels
y_pred.append(np.argmax(preds, axis = - 1))
# convert the true and predicted labels into tensors
correct_labels = tf.concat([item for item in y_true], axis = 0)
predicted_labels = tf.concat([item for item in y_pred], axis = 0)
Thank you for reading the article.