How to plot confusion matrix for prefetched dataset in Tensorflow

Written by - Aionlinecourse4131 times views

In Tensorflow, a common task is to plot a confusion matrix for a prefetched dataset. This is a good way to visualize the model's performance and identify any potential problems. In this article, we'll look at the basics of how to plot a confusion matrix for a tupled dataset. It's important to remember that this matrix is only a rough representation of the data; it does not represent actual data.

How to plot confusion matrix for prefetched dataset in Tensorflow

Solution 1:

Disclaimer: this won't work for shuffled datasets. I will update this answer as soon as I can.

You can use tf.stack to concatenate all the dataset values. Like so:

true_categories = tf.concat([y for x, y in test_dataset], axis=0)

For reproducibility, let's say you have a dataset, a neural network, and a training loop:

import tensorflow_datasets as tfds
import tensorflow as tf
from sklearn.metrics import confusion_matrix

data, info = tfds.load('iris', split='train',
                       as_supervised=True,
                       shuffle_files=True,
                       with_info=True)

AUTOTUNE = tf.data.experimental.AUTOTUNE

train_dataset = data.take(120).batch(4).prefetch(buffer_size=AUTOTUNE)
test_dataset = data.skip(120).take(30).batch(4).prefetch(buffer_size=AUTOTUNE)

model = tf.keras.Sequential([
    tf.keras.layers.Dense(8, activation='relu'),
    tf.keras.layers.Dense(16, activation='relu'),
    tf.keras.layers.Dense(info.features['label'].num_classes, activation='softmax')
    ])

model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', 
              metrics='accuracy')

history = model.fit(train_dataset, validation_data=test_dataset, epochs=50, verbose=0)

Now that your model has been fitted, you can predict the test set:

y_pred = model.predict(test_dataset)
array([[2.2177568e-05, 3.0841196e-01, 6.9156587e-01],
       [4.3539176e-06, 1.2779665e-01, 8.7219906e-01],
       [1.0816366e-03, 9.2667454e-01, 7.2243840e-02],
       [9.9921310e-01, 7.8686583e-04, 9.8775059e-09]], dtype=float32)

This is going to be a (n_samples, 3) array because we're working with three categories. We want a (n_samples, 1) array for sklearn.metrics.confusion_matrix, so take the argmax:

predicted_categories = tf.argmax(y_pred, axis=1)
<tf.Tensor: shape=(30,), dtype=int64, numpy=
array([2, 2, 2, 0, 2, 2, 2, 2, 1, 1, 2, 0, 0, 2, 1, 1, 1, 2, 0, 2, 1, 2,
       1, 0, 2, 0, 1, 2, 1, 0], dtype=int64)>

Then, we can take all the y values from the prefetch dataset:

true_categories = tf.concat([y for x, y in test_dataset], axis=0)
[<tf.Tensor: shape=(4,), dtype=int64, numpy=array([1, 1, 1, 0], dtype=int64)>,
 <tf.Tensor: shape=(4,), dtype=int64, numpy=array([2, 2, 2, 2], dtype=int64)>,
 <tf.Tensor: shape=(4,), dtype=int64, numpy=array([1, 1, 1, 0], dtype=int64)>,
 <tf.Tensor: shape=(4,), dtype=int64, numpy=array([0, 2, 1, 1], dtype=int64)>,
 <tf.Tensor: shape=(4,), dtype=int64, numpy=array([1, 2, 0, 2], dtype=int64)>,
 <tf.Tensor: shape=(4,), dtype=int64, numpy=array([1, 2, 1, 0], dtype=int64)>,
 <tf.Tensor: shape=(4,), dtype=int64, numpy=array([2, 0, 1, 2], dtype=int64)>,
 <tf.Tensor: shape=(2,), dtype=int64, numpy=array([1, 0], dtype=int64)>]

Then, you are ready to get the confusion matrix:

confusion_matrix(predicted_categories, true_categories)
array([[ 9,  0,  0],
       [ 0,  9,  0],
       [ 0,  2, 10]], dtype=int64)

(9 + 9 + 10) / 30 = 0.933 is the accuracy score. It corresponds to model.evaluate(test_dataset):

8/8 [==============================] - 0s 785us/step - loss: 0.1907 - accuracy: 0.9333

Also the results are consistent with sklearn.metrics.classification_report:

              precision    recall  f1-score   support
           0       1.00      1.00      1.00         8
           1       0.82      1.00      0.90         9
           2       1.00      0.85      0.92        13
    accuracy                           0.93        30
   macro avg       0.94      0.95      0.94        30
weighted avg       0.95      0.93      0.93        30

Here's the entire code:

import tensorflow_datasets as tfds
import tensorflow as tf
from sklearn.metrics import confusion_matrix

data, info = tfds.load('iris', split='train',
                       as_supervised=True,
                       shuffle_files=True,
                       with_info=True)

AUTOTUNE = tf.data.experimental.AUTOTUNE

train_dataset = data.take(120).batch(4).prefetch(buffer_size=AUTOTUNE)
test_dataset = data.skip(120).take(30).batch(4).prefetch(buffer_size=AUTOTUNE)

model = tf.keras.Sequential([
    tf.keras.layers.Dense(8, activation='relu'),
    tf.keras.layers.Dense(16, activation='relu'),
    tf.keras.layers.Dense(info.features['label'].num_classes, activation='softmax')
    ])

model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', 
              metrics='accuracy')

history = model.fit(train_dataset, validation_data=test_dataset, epochs=50, verbose=0)

y_pred = model.predict(test_dataset)

predicted_categories = tf.argmax(y_pred, axis=1)

true_categories = tf.concat([y for x, y in test_dataset], axis=0)

confusion_matrix(predicted_categories, true_categories)

Solution 2:

This code will work with shuffled tf.data.Dataset

y_pred = []  # store predicted labels
y_true = []  # store true labels

# iterate over the dataset
for image_batch, label_batch in dataset:   # use dataset.unbatch() with repeat
   # append true labels
   y_true.append(label_batch)
   # compute predictions
   preds = model.predict(image_batch)
   # append predicted labels
   y_pred.append(np.argmax(preds, axis = - 1))

# convert the true and predicted labels into tensors
correct_labels = tf.concat([item for item in y_true], axis = 0)
predicted_labels = tf.concat([item for item in y_pred], axis = 0)

Thank you for reading the article.

Recommended Projects

Deep Learning Interview Guide

Topic modeling using K-means clustering to group customer reviews

Have you ever thought about the ways one can analyze a review to extract all the misleading or useful information?...

Natural Language Processing
Deep Learning Interview Guide

Medical Image Segmentation With UNET

Have you ever thought about how doctors are so precise in diagnosing any conditions based on medical images? Quite simply,...

Computer Vision
Deep Learning Interview Guide

Build A Book Recommender System With TF-IDF And Clustering(Python)

Have you ever thought about the reasons behind the segregation and recommendation of books with similarities? This project is aimed...

Machine LearningDeep LearningNatural Language Processing
Deep Learning Interview Guide

Automatic Eye Cataract Detection Using YOLOv8

Cataracts are a leading cause of vision impairment worldwide, affecting millions of people every year. Early detection and timely intervention...

Computer Vision
Deep Learning Interview Guide

Crop Disease Detection Using YOLOv8

In this project, we are utilizing AI for a noble objective, which is crop disease detection. Well, you're here if...

Computer Vision
Deep Learning Interview Guide

Vegetable classification with Parallel CNN model

The Vegetable Classification project shows how CNNs can sort vegetables efficiently. As industries like agriculture and food retail grow, automating...

Machine LearningDeep Learning
Deep Learning Interview Guide

Banana Leaf Disease Detection using Vision Transformer model

Banana cultivation is a significant agricultural activity in many tropical and subtropical regions, providing a vital source of income and...

Deep LearningComputer Vision