How to assign a name for a pytorch layer?

Written by - Aionlinecourse2089 times views

There are mostly two ways to assign a name for a PyTorch layer. The first way is to use the torch.nn package's naming convention, where each value in Bidirectional(...) is replaced with underscore( _ ) underscores. This way, the layered module would be called FuBLongShortTermMemory .

The second way uses prefixes or keywords to group layers by type. "Local" for example could be used as the keyword if adding redundant layers to localize receptive fields of convolutional neural networks, which can be useful in pedestrian detection applications that require high precision on pedestrian boundaries. "Generative" could serve as keyword if adding generative neural network layers that produce new content at each timestep.

How to assign a name for a pytorch layer:

Sequential

Pass an instance of collections.OrderedDict. Code below gives conv1.weights, conv1.bias, conv2.weight, conv2.bias (notice lack of torch.nn.ReLU(), see end of this answer).

import collections

import torch

model = torch.nn.Sequential(
    collections.OrderedDict(
        [
            ("conv1", torch.nn.Conv2d(1, 20, 5)),
            ("relu1", torch.nn.ReLU()),
            ("conv2", torch.nn.Conv2d(20, 64, 5)),
            ("relu2", torch.nn.ReLU()),
        ]
    )
)

for name, param in model.named_parameters():
    print(name)

Dynamic

Use ModuleDict instead of ModuleList:

class MyModule(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.whatever = torch.nn.ModuleDict(
            {f"my_name{i}": torch.nn.Conv2d(10, 10, 3) for i in range(5)}
        )

Will give us whatever.my_name{i}.weight (or bias) for each created module dynamically.

Direct

Just name it however you want and that's how it will be named

self.my_name_or_whatever = nn.Linear(7, 8)

You didn't think about

  • If you want to plot weights, biases and their gradients you can go along this route
  • You can't plot activations this way (or output from activations). Use PyTorch hooks instead (if you want per-layer gradients as they pass through network use this also)

For last task you can use third party library torchfunc (disclaimer: I'm the author) or go directly and write your own hooks.


Thank you for reading the article. If you face any problem, please comment below.

Recommended Projects

Deep Learning Interview Guide

Topic modeling using K-means clustering to group customer reviews

Have you ever thought about the ways one can analyze a review to extract all the misleading or useful information?...

Natural Language Processing
Deep Learning Interview Guide

Medical Image Segmentation With UNET

Have you ever thought about how doctors are so precise in diagnosing any conditions based on medical images? Quite simply,...

Computer Vision
Deep Learning Interview Guide

Build A Book Recommender System With TF-IDF And Clustering(Python)

Have you ever thought about the reasons behind the segregation and recommendation of books with similarities? This project is aimed...

Machine LearningDeep LearningNatural Language Processing
Deep Learning Interview Guide

Automatic Eye Cataract Detection Using YOLOv8

Cataracts are a leading cause of vision impairment worldwide, affecting millions of people every year. Early detection and timely intervention...

Computer Vision
Deep Learning Interview Guide

Crop Disease Detection Using YOLOv8

In this project, we are utilizing AI for a noble objective, which is crop disease detection. Well, you're here if...

Computer Vision
Deep Learning Interview Guide

Vegetable classification with Parallel CNN model

The Vegetable Classification project shows how CNNs can sort vegetables efficiently. As industries like agriculture and food retail grow, automating...

Machine LearningDeep Learning
Deep Learning Interview Guide

Banana Leaf Disease Detection using Vision Transformer model

Banana cultivation is a significant agricultural activity in many tropical and subtropical regions, providing a vital source of income and...

Deep LearningComputer Vision