How to set class weights in DecisionTreeClassifier for multi-class setting

Written by - Aionlinecourse2398 times views

In a multi-class setting, you can set class weights in the DecisionTreeClassifier by using the class_weight parameter. This parameter can be set to a dictionary or a "balanced" string.

If you set class_weight to a dictionary, the keys should be the class labels and the values should be the corresponding weights. For example, if you have a 3-class problem with the class labels 0, 1, and 2, you can set the class weights as follows:

class_weights = {0: 1, 1: 2, 2: 1}
clf = DecisionTreeClassifier(class_weight=class_weights)

This will assign a weight of 1 to class 0, a weight of 2 to class 1, and a weight of 1 to class 2.

Alternatively, you can set class_weight to the string "balanced", which will automatically adjust the weights inversely proportional to the class frequencies in the input data. For example, if the class frequency for class 0 is 20%, the weight for class 0 will be 1 / 0.2 = 5. The weights for the other classes will be similarly adjusted.

clf = DecisionTreeClassifier(class_weight='balanced')

You can also use the class_weight parameter in combination with the sample_weight parameter, which allows you to set weights for individual samples in the training set.

Recommended Projects

Deep Learning Interview Guide

Topic modeling using K-means clustering to group customer reviews

Have you ever thought about the ways one can analyze a review to extract all the misleading or useful information?...

Natural Language Processing
Deep Learning Interview Guide

Medical Image Segmentation With UNET

Have you ever thought about how doctors are so precise in diagnosing any conditions based on medical images? Quite simply,...

Computer Vision
Deep Learning Interview Guide

Build A Book Recommender System With TF-IDF And Clustering(Python)

Have you ever thought about the reasons behind the segregation and recommendation of books with similarities? This project is aimed...

Machine LearningDeep LearningNatural Language Processing
Deep Learning Interview Guide

Automatic Eye Cataract Detection Using YOLOv8

Cataracts are a leading cause of vision impairment worldwide, affecting millions of people every year. Early detection and timely intervention...

Computer Vision
Deep Learning Interview Guide

Crop Disease Detection Using YOLOv8

In this project, we are utilizing AI for a noble objective, which is crop disease detection. Well, you're here if...

Computer Vision
Deep Learning Interview Guide

Vegetable classification with Parallel CNN model

The Vegetable Classification project shows how CNNs can sort vegetables efficiently. As industries like agriculture and food retail grow, automating...

Machine LearningDeep Learning
Deep Learning Interview Guide

Banana Leaf Disease Detection using Vision Transformer model

Banana cultivation is a significant agricultural activity in many tropical and subtropical regions, providing a vital source of income and...

Deep LearningComputer Vision