- How to solve ' CUDA out of memory. Tried to allocate xxx MiB' in pytorch?
- How to calculate TPR and FPR in Python without using sklearn?
- How to create a custom PreprocessingLayer in TF 2.2
- Python: How to retrive the best model from Optuna LightGBM study?
- How to predownload a transformers model
- How to reset Keras metrics?
- How to handle missing values (NaN) in categorical data when using scikit-learn OneHotEncoder?
- How to get probabilities along with classification in LogisticRegression?
- How to choose the number of units for the Dense layer in the Convoluted neural network for a Image classification problem?
- How to use pydensecrf in Python3.7?
- How to set class weights in DecisionTreeClassifier for multi-class setting
- How to Extract Data from tmdB using Python
- How to add attention layer to a Bi-LSTM
- How to include SimpleImputer before CountVectorizer in a scikit-learn Pipeline?
- How to load a keras model saved as .pb
- How to train new classes on pretrained yolov4 model in darknet
- How To Import The MNIST Dataset From Local Directory Using PyTorch
- how to split up tf.data.Dataset into x_train, y_train, x_test, y_test for keras
- How to plot confusion matrix for prefetched dataset in Tensorflow
- How to Use Class Weights with Focal Loss in PyTorch for Imbalanced dataset for MultiClass Classification
How to graph centroids with KMeans
Written by- Aionlinecourse699 times views
To graph centroids with KMeans, you can use the following steps:
1. Import the necessary libraries. You will need matplotlib for plotting and sklearn for the KMeans algorithm.
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
1. Load your data into a NumPy array or Pandas dataframe. The data should have at least two features, as KMeans works with numeric data.
2. Use the KMeans class to fit the data and predict the cluster labels.
kmeans = KMeans(n_clusters=3) # specify the number of clusters
kmeans.fit(data)
labels = kmeans.predict(data)
1. Extract the centroids from the fitted KMeans model.
centroids = kmeans.cluster_centers_
1. Plot the data and the centroids using matplotlib.
# plot the data pointsplt.scatter(data[:, 0], data[:, 1], c=labels)
# plot the centroidsplt.scatter(centroids[:, 0], centroids[:, 1], marker='*', c='r', s=200)
plt.show()
Note that this is just one way to visualize the centroids with KMeans. There are many other options and variations depending on the specific requirements and characteristics of your data.