How to graph centroids with KMeans

Written by - Aionlinecourse881 times views

To graph centroids with KMeans, you can use the following steps:

1. Import the necessary libraries. You will need matplotlib for plotting and sklearn for the KMeans algorithm.

import matplotlib.pyplot as plt
from sklearn.cluster import KMeans

1. Load your data into a NumPy array or Pandas dataframe. The data should have at least two features, as KMeans works with numeric data.
2. Use the KMeans class to fit the data and predict the cluster labels.

kmeans = KMeans(n_clusters=3)  # specify the number of clusters
kmeans.fit(data)
labels = kmeans.predict(data)

 1. Extract the centroids from the fitted KMeans model.

centroids = kmeans.cluster_centers_

 1. Plot the data and the centroids using matplotlib.

# plot the data pointsplt.scatter(data[:, 0], data[:, 1], c=labels)
# plot the centroidsplt.scatter(centroids[:, 0], centroids[:, 1], marker='*', c='r', s=200)
plt.show()

Note that this is just one way to visualize the centroids with KMeans. There are many other options and variations depending on the specific requirements and characteristics of your data.

Recommended Projects

Deep Learning Interview Guide

Topic modeling using K-means clustering to group customer reviews

Have you ever thought about the ways one can analyze a review to extract all the misleading or useful information?...

Natural Language Processing
Deep Learning Interview Guide

Medical Image Segmentation With UNET

Have you ever thought about how doctors are so precise in diagnosing any conditions based on medical images? Quite simply,...

Computer Vision
Deep Learning Interview Guide

Build A Book Recommender System With TF-IDF And Clustering(Python)

Have you ever thought about the reasons behind the segregation and recommendation of books with similarities? This project is aimed...

Machine LearningDeep LearningNatural Language Processing
Deep Learning Interview Guide

Automatic Eye Cataract Detection Using YOLOv8

Cataracts are a leading cause of vision impairment worldwide, affecting millions of people every year. Early detection and timely intervention...

Computer Vision
Deep Learning Interview Guide

Crop Disease Detection Using YOLOv8

In this project, we are utilizing AI for a noble objective, which is crop disease detection. Well, you're here if...

Computer Vision
Deep Learning Interview Guide

Vegetable classification with Parallel CNN model

The Vegetable Classification project shows how CNNs can sort vegetables efficiently. As industries like agriculture and food retail grow, automating...

Machine LearningDeep Learning
Deep Learning Interview Guide

Banana Leaf Disease Detection using Vision Transformer model

Banana cultivation is a significant agricultural activity in many tropical and subtropical regions, providing a vital source of income and...

Deep LearningComputer Vision