- How to calculate TPR and FPR in Python without using sklearn?
- How to create a custom PreprocessingLayer in TF 2.2
- Python: How to retrive the best model from Optuna LightGBM study?
- How to predownload a transformers model
- How to reset Keras metrics?
- How to handle missing values (NaN) in categorical data when using scikit-learn OneHotEncoder?
- How to get probabilities along with classification in LogisticRegression?
- How to choose the number of units for the Dense layer in the Convoluted neural network for a Image classification problem?
- How to use pydensecrf in Python3.7?
- How to set class weights in DecisionTreeClassifier for multi-class setting
- How to Extract Data from tmdB using Python
- How to add attention layer to a Bi-LSTM
- How to include SimpleImputer before CountVectorizer in a scikit-learn Pipeline?
- How to load a keras model saved as .pb
- How to train new classes on pretrained yolov4 model in darknet
- How To Import The MNIST Dataset From Local Directory Using PyTorch
- how to split up tf.data.Dataset into x_train, y_train, x_test, y_test for keras
- How to plot confusion matrix for prefetched dataset in Tensorflow
- How to Use Class Weights with Focal Loss in PyTorch for Imbalanced dataset for MultiClass Classification
- How to solve "ValueError: y should be a 1d array, got an array of shape (3, 5) instead." for naive Bayes?
How to solve ' CUDA out of memory. Tried to allocate xxx MiB' in pytorch?
Written by- Aionlinecourse1087 times views
If you are seeing the 'CUDA out of memory' error in PyTorch, it means that your GPU does not have sufficient memory to complete the operation you are trying to perform. Here are a few things you can try to resolve this issue:
1.Reduce the batch size: One of the main causes of the 'CUDA out of memory' error is a large batch size. Try reducing the batch size and see if it resolves the issue.
2. Increase the GPU memory: If you have access to the GPU settings, you can try increasing the GPU memory allocated to PyTorch. This can be done through the CUDA_VISIBLE_DEVICES environment variable.
3. Use gradient accumulation: Gradient accumulation is a technique that allows you to break up a large batch into smaller batches and perform the forward and backward passes separately. This can help reduce the amount of memory required by your model.
4. Use a smaller model: If your model is too large to fit in the GPU memory, you can try using a smaller model or pruning unnecessary weights.
5. Use half precision: PyTorch supports half precision (fp16) computations, which can significantly reduce the memory footprint of your model. You can try using fp16 tensors and see if it helps.
6. Use memory profiling: PyTorch has a built-in memory profiler that can help you identify which parts of your model are using the most memory. You can use this information to optimize your model and reduce its memory usage.
I hope these suggestions help! If you have any further questions or need more guidance, don't hesitate to ask.
1.Reduce the batch size: One of the main causes of the 'CUDA out of memory' error is a large batch size. Try reducing the batch size and see if it resolves the issue.
2. Increase the GPU memory: If you have access to the GPU settings, you can try increasing the GPU memory allocated to PyTorch. This can be done through the CUDA_VISIBLE_DEVICES environment variable.
3. Use gradient accumulation: Gradient accumulation is a technique that allows you to break up a large batch into smaller batches and perform the forward and backward passes separately. This can help reduce the amount of memory required by your model.
4. Use a smaller model: If your model is too large to fit in the GPU memory, you can try using a smaller model or pruning unnecessary weights.
5. Use half precision: PyTorch supports half precision (fp16) computations, which can significantly reduce the memory footprint of your model. You can try using fp16 tensors and see if it helps.
6. Use memory profiling: PyTorch has a built-in memory profiler that can help you identify which parts of your model are using the most memory. You can use this information to optimize your model and reduce its memory usage.
I hope these suggestions help! If you have any further questions or need more guidance, don't hesitate to ask.