How to use OneCycleLR?

Written by - Aionlinecourse1303 times views

How to use OneCycleLR?

OneCycleLR is a learning rate scheduling technique that is designed to improve model convergence and potentially achieve better results by adjusting the learning rate during training. It indicates cyclical changes in the learning rate during training. First, the model chooses a lower learning rate, then increases it during the initial phase and decreases it again. Now let's see how to implement the OneCycleLR in Pytorch.

First, import the libraries to perform OneCycleLR:

Create a sample model

class Net(nn.Module):
    def __init__(self):
super(Net, self).__init__()
self.linear = nn.Linear(10, 1)
def forward(self, x):
return self.linear(x)
# create the model
model = Net()

Now create the optimizer where the learning rate is 0.01 and create the OneCycleLR learning rate scheduler instance where the maximum learning rate is 1. There are other parameters like div_factor (divide the maximum learning rate by this factor to get the minimum learning rate), pct_start (percentage of the total epochs to increase the learning rate), total epochs, and so on.

# Create the optimizer and scheduler
optimizer = Adam(model.parameters(), lr=0.01)
scheduler = optim.lr_scheduler.OneCycleLR(optimizer, max_lr=1.0)

Now create a dataloader for training the data and then train the data. Here we update the Learning rate scheduler in each epoch. 

# Load the training data
trainloader = torch.utils.data.DataLoader(...)
# Train the model
for epoch in range(num_epochs):
    for batch_idx, (data, target) in enumerate(trainloader):
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()
     # Update the scheduler for next epoch
     scheduler.step()

You can experiment with different values of the OneCycleLR parameters to find the best settings for the model training. Overall the OneCycleLR Scheduler is a powerful technique to enhance model convergence and performance by adjusting the learning rate during training. It helps to prevent overfitting and improve the efficiency of deep learning models. Anotherly, it can fine-tune the hyperparameters to achieve the best results. Hope, the article helps you to gather more than average knowledge about OneCycleLR.

Thanks for reading the article.

Recommended Projects

Deep Learning Interview Guide

Medical Image Segmentation With UNET

Have you ever thought about how doctors are so precise in diagnosing any conditions based on medical images? Quite simply,...

Computer Vision
Deep Learning Interview Guide

Build A Book Recommender System With TF-IDF And Clustering(Python)

Have you ever thought about the reasons behind the segregation and recommendation of books with similarities? This project is aimed...

Machine LearningDeep LearningNatural Language Processing
Deep Learning Interview Guide

Automatic Eye Cataract Detection Using YOLOv8

Cataracts are a leading cause of vision impairment worldwide, affecting millions of people every year. Early detection and timely intervention...

Computer Vision
Deep Learning Interview Guide

Crop Disease Detection Using YOLOv8

In this project, we are utilizing AI for a noble objective, which is crop disease detection. Well, you're here if...

Computer Vision
Deep Learning Interview Guide

Vegetable classification with Parallel CNN model

The Vegetable Classification project shows how CNNs can sort vegetables efficiently. As industries like agriculture and food retail grow, automating...

Machine LearningDeep Learning
Deep Learning Interview Guide

Banana Leaf Disease Detection using Vision Transformer model

Banana cultivation is a significant agricultural activity in many tropical and subtropical regions, providing a vital source of income and...

Deep LearningComputer Vision
Deep Learning Interview Guide

Credit Card Default Prediction Using Machine Learning Techniques

This project aims to develop and assess machine learning models in predicting customer defaults, assisting businesses in evaluating the risk...

Machine Learning