How to get the Weight of Evidence (WOE) and Information Value (IV) in Python/pandas?

Written by - Aionlinecourse3885 times views

To calculate the Weight of Evidence (WOE) and Information Value (IV) in Python/pandas, you can use the woe() and iv() functions provided by the WeightOfEvidence class in the pywoe library.
Here is an example of how you can use these functions:

import pandas as pd
from pywoe.pywoe import WeightOfEvidence

# Load the data into a pandas DataFrame
df = pd.read_csv('data.csv')

# Select the target column and the feature columns
target_col = 'target'
feature_cols = ['feature1', 'feature2', 'feature3']

# Create a WeightOfEvidence object
woe = WeightOfEvidence()

# Calculate the WOE for each feature
woe_dict = woe.woe(df, target_col, feature_cols)

# Calculate the IV for each feature
iv_dict = woe.iv(df, target_col, feature_cols)

# Print the WOE and IV for each feature
for feature, woe_val in woe_dict.items():
    iv_val = iv_dict[feature]
    print(f'Feature: {feature}, WOE: {woe_val}, IV: {iv_val}')

Alternatively, you can also use the category_encoders library to calculate the WOE and IV. Here is an example of how you can do that:

import pandas as pd
import category_encoders as ce

# Load the data into a pandas DataFrame
df = pd.read_csv('data.csv')

# Select the target column and the feature columns
target_col = 'target'
feature_cols = ['feature1', 'feature2', 'feature3']

# Create a WOE encoder
encoder = ce.WOEEncoder(cols=feature_cols)

# Fit the encoder on the data
encoder.fit(df[feature_cols], df[target_col])

# Transform the data using the encoder
df_woe = encoder.transform(df[feature_cols])

# Print the WOE and IV for each feature
for col, woe_val, iv_val in zip(df_woe.columns, encoder.woe_, encoder.iv_):
    print(f'Feature: {col}, WOE: {woe_val}, IV: {iv_val}')

I hope this helps! Let us know if you have any questions.

Recommended Projects

Deep Learning Interview Guide

Topic modeling using K-means clustering to group customer reviews

Have you ever thought about the ways one can analyze a review to extract all the misleading or useful information?...

Natural Language Processing
Deep Learning Interview Guide

Medical Image Segmentation With UNET

Have you ever thought about how doctors are so precise in diagnosing any conditions based on medical images? Quite simply,...

Computer Vision
Deep Learning Interview Guide

Build A Book Recommender System With TF-IDF And Clustering(Python)

Have you ever thought about the reasons behind the segregation and recommendation of books with similarities? This project is aimed...

Machine LearningDeep LearningNatural Language Processing
Deep Learning Interview Guide

Automatic Eye Cataract Detection Using YOLOv8

Cataracts are a leading cause of vision impairment worldwide, affecting millions of people every year. Early detection and timely intervention...

Computer Vision
Deep Learning Interview Guide

Crop Disease Detection Using YOLOv8

In this project, we are utilizing AI for a noble objective, which is crop disease detection. Well, you're here if...

Computer Vision
Deep Learning Interview Guide

Vegetable classification with Parallel CNN model

The Vegetable Classification project shows how CNNs can sort vegetables efficiently. As industries like agriculture and food retail grow, automating...

Machine LearningDeep Learning
Deep Learning Interview Guide

Banana Leaf Disease Detection using Vision Transformer model

Banana cultivation is a significant agricultural activity in many tropical and subtropical regions, providing a vital source of income and...

Deep LearningComputer Vision