- How to use sklearn ( chi-square or ANOVA) to removes redundant features
- How to graph centroids with KMeans
- How to solve ' CUDA out of memory. Tried to allocate xxx MiB' in pytorch?
- How to calculate TPR and FPR in Python without using sklearn?
- How to create a custom PreprocessingLayer in TF 2.2
- Python: How to retrive the best model from Optuna LightGBM study?
- How to predownload a transformers model
- How to reset Keras metrics?
- How to handle missing values (NaN) in categorical data when using scikit-learn OneHotEncoder?
- How to get probabilities along with classification in LogisticRegression?
- How to choose the number of units for the Dense layer in the Convoluted neural network for a Image classification problem?
- How to use pydensecrf in Python3.7?
- How to set class weights in DecisionTreeClassifier for multi-class setting
- How to Extract Data from tmdB using Python
- How to add attention layer to a Bi-LSTM
- How to include SimpleImputer before CountVectorizer in a scikit-learn Pipeline?
- How to load a keras model saved as .pb
- How to train new classes on pretrained yolov4 model in darknet
- How To Import The MNIST Dataset From Local Directory Using PyTorch
- how to split up tf.data.Dataset into x_train, y_train, x_test, y_test for keras
How to split data based on a column value in sklearn
Written by- Aionlinecourse890 times views
You can use the train_test_split function from scikit-learn's model_selection module to split a dataset into a training set and a test set based on a specified split ratio. For example, you can use the following code to split the data into a training set that contains 75% of the data and a test set that contains 25% of the data:
If you want to split the data based on the values of a specific column, you can extract that column as a separate array and use it as the target vector in the train_test_split function. For example:
from sklearn.model_selection import train_test_splitHere, X and y are the feature matrix and the target vector, respectively. The test_size parameter specifies the proportion of the data that should be allocated to the test set.
# Split the data into a training set (75%) and a test set (25%)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
If you want to split the data based on the values of a specific column, you can extract that column as a separate array and use it as the target vector in the train_test_split function. For example:
# Extract the 'age' column as the target vectorThis will split the data into a training set and a test set based on the values in the 'age' column.
y = df['age']
# Split the data into a training set (75%) and a test set (25%)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)